Banach Operators
نویسندگان
چکیده
We consider real spaces only. Definition. An operator T : X → Y between Banach spaces X and Y is called a Hahn-Banach operator if for every isometric embedding of the space X into a Banach space Z there exists a norm-preserving extension T̃ of T to Z. A geometric property of Hahn-Banach operators of finite rank acting between finite-dimensional normed spaces is found. This property is used to characterize pairs of finite-dimensional normed spaces (X, Y ) such that there exists a Hahn-Banach operator T : X → Y of rank k. The latter result is a generalization of a recent result due to B. L. Chalmers and B. Shekhtman. Everywhere in this paper we consider only real linear spaces. Our starting point is the classical Hahn-Banach theorem ([H], [B1]). The form of the Hahn-Banach theorem we are interested in can be stated in the following way. Hahn-Banach Theorem. Let X and Y be Banach spaces, T : X → Y be a bounded linear operator of rank 1 and Z be a Banach space containing X as a subspace. Then there exists a bounded linear operator T̃ : Z → Y satisfying (a) ||T̃ || = ||T ||; (b) T̃ x = Tx for every x ∈ X. Definition 1. An operator T̃ : Z → Y satisfying (a) and (b) for a bounded linear operator T : X → Y is called a norm-preserving extension of T to Z. The Hahn-Banach theorem is one of the basic principles of linear analysis. It is quite natural that there exists a vast literature on generalizations of the HahnBanach theorem for operators of higher rank. See the papers G. P. Akilov [A], J. M. Borwein [Bor], B. L. Chalmers and B. Shekhtman [CS], G. Elliott and I. Halperin [EH], D. B. Goodner [Go], A. D. Ioffe [I], S. Kakutani [Kak], J. L. Kelley [Kel], J. Lindenstrauss [L1], [L2], L. Nachbin [N1] and M. I. Ostrovskii [O], representing different directions of such generalizations, and references therein. There exist two interesting surveys devoted to the Hahn-Banach theorem and its generalizations, see G. Buskes [Bus] and L. Nachbin [N2]. We shall use the following natural definition. 1991 Mathematics Subject Classification. 46B20, 47A20.
منابع مشابه
Strong convergence theorem for finite family of m-accretive operators in Banach spaces
The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
متن کاملSome properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملOrder Almost Dunford-Pettis Operators on Banach Lattices
By introducing the concepts of order almost Dunford-Pettis and almost weakly limited operators in Banach lattices, we give some properties of them related to some well known classes of operators, such as, order weakly compact, order Dunford-Pettis, weak and almost Dunford- Pettis and weakly limited operators. Then, we characterize Banach lat- tices E and F on which each operator from E into F t...
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کامل